
www.manaraa.com

Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2016-03-01

Enabling Optimizations Through Demodularization Enabling Optimizations Through Demodularization

Blake Dennis Johnson
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Computer Sciences Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Johnson, Blake Dennis, "Enabling Optimizations Through Demodularization" (2016). Theses and
Dissertations. 5722.
https://scholarsarchive.byu.edu/etd/5722

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5722&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F5722&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/5722?utm_source=scholarsarchive.byu.edu%2Fetd%2F5722&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

www.manaraa.com

Enabling Optimizations Through Demodularization

Blake Dennis Johnson

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Eric Mercer, Chair
Christophe Giraud-Carrier

Quinn Snell

Department of Computer Science

Brigham Young University

March 2016

Copyright © 2016 Blake Dennis Johnson

All Rights Reserved

www.manaraa.com

ABSTRACT

Enabling Optimizations Through Demodularization

Blake Dennis Johnson
Department of Computer Science, BYU

Master of Science

Programmers want to write modular programs to increase maintainability and create
abstractions, but modularity hampers optimizations, especially when modules are compiled
separately or written in different languages. In languages with syntactic extension capabili-
ties, each module in a program can be written in a separate language, and the module system
must ensure that the modules interoperate correctly. In Racket, the module system ensures
this by separating module code into phases for runtime and compile-time and allowing phased
imports and exports inside modules. We present an algorithm, called demodularization, that
combines all executable code from a phased modular program into a single module that can
then be optimized as a whole program. The demodularized programs have the same behavior
as their modular counterparts but are easier to optimize. We show that programs maintain
their meaning through an operational semantics of the demodularization process and verify
that performance increases by comparing modular Racket programs to the equivalent de-
modularized and optimized programs. We use the existing Racket optimizer to optimize the
demodularized programs by decompiling them into an intermediate form that the optimizer
uses. We also demonstrate a dead code elimination optimization that dramatically reduces
the file size of demodularized Racket programs.

Keywords: macros, Racket, modules, optimization

www.manaraa.com

ACKNOWLEDGMENTS

I would like to thank Jay McCarthy for getting me interested in the field of pro-

gramming languages, and for being both an advisor and mentor to me. I have enjoyed both

our political and technical talks. Matthew Flatt has been an immense help in explaining to

me the internals of the Racket runtime. He is always quick to respond to emails and offers

salient solutions to problems I have had. I would also like to thank Eric Mercer, who took

me on as his student after Jay left. I’m grateful for the opportunity he gave me to finish this

thesis and the valuable input he gave in putting it together. Finally, I would like to thank

my mom, Jane Johnson, for always believing in me and encouraging me to finish.

www.manaraa.com

Contents

List of Figures vi

List of Listings vii

1 Introduction 1

2 The Racket Module and Macro Systems 6

2.1 The Racket Programming Language . 6

2.2 Macros . 7

2.3 Modules . 8

2.4 Phases . 10

2.5 Compiling and Running Programs . 12

2.6 Preparing for Demodularization . 13

3 Intuition 14

3.1 Example Program . 14

3.2 Demodularization . 17

3.3 Optimization . 18

3.4 Demodularization with Phases . 19

4 Model 22

4.1 A Module Language . 22

4.2 Compilation . 23

4.3 Evaluation . 24

iv

www.manaraa.com

4.4 Demodularization . 27

4.5 Equivalence . 29

5 Implementation 31

5.1 Racket Compilation Process . 31

5.2 Racket bytecode . 32

5.3 Demodularization . 33

5.4 Optimization . 34

5.5 Decompilation . 35

5.6 Limitations . 36

5.7 Usage . 36

6 Evaluation 37

6.1 Racket Optimizer . 37

6.2 Testing Setup . 37

6.3 Micro benchmarks . 38

6.4 Macro Benchmarks . 38

6.5 Dead Code Elimination . 40

6.6 Further Optimizations . 42

7 Related Work 44

8 Conclusion 46

References 48

Appendices 51

A Benchmarks 51

A.1 Micro-benchmark generator . 51

A.2 XML benchmark . 53

v

www.manaraa.com

List of Figures

2.1 Require graph for the while-test program 12

3.1 Require graph for the main program . 17

3.2 Require graph for the a program . 21

4.1 mod language grammar . 23

4.2 Compiled language grammar . 24

4.3 Extensions to compiled language grammar 25

4.4 Demodularization algorithm . 27

4.5 Demodularization algorithm . 28

4.6 Demodularization algorithm . 28

4.7 Demodularization algorithm . 28

4.8 Bisimilarity of a program before and after demodularization 30

5.1 Racket compilation process . 32

5.2 Demodularization process . 34

6.1 Results from micro benchmarks . 39

6.2 Results from macro benchmarks . 41

6.3 Dead code elimination results . 42

vi

www.manaraa.com

List of Listings

2.1 a macro implementation of a while loop . 7

2.2 use and expansion of a while loop . 8

2.3 counter.rkt: A simple Racket module implementing a counter 9

2.4 while-test.rkt: A Racket module that uses other modules 10

2.5 while-lang.rkt: A Racket module implementing a language with while loops 11

3.1 main.rkt module with queue usage . 14

3.2 queue.rkt module . 15

3.3 Interfaces for two queues using different backing structures. (a) long-queue.rkt

using a vector and (b) short-queue.rkt using a list. 16

3.4 main.rkt module after macro expansion . 17

3.5 main.rkt module after demodularization . 19

3.6 main.rkt module after optimization . 20

3.7 a.rkt module . 20

3.8 b.rkt module . 21

3.9 c.rkt module . 21

4.1 Example program in the mod language . 24

4.2 Compiled version of example program . 24

5.1 Example program written in kernel language 33

5.2 Bytecode representation of program from Listing 5.1 33

vii

www.manaraa.com

Chapter 1

Introduction

Programmers should not have to sacrifice the software engineering goals of modular

design and good abstractions for performance. Instead, their tools should make running a

well-designed program as efficient as possible.

Many programming languages provide features for creating modular programs. This

may be as simple as separating code into different files or as complex as specifying separate

interfaces and implementations for modules. When code is separated into modules, it is

possible to compile each module separately provided enough information is known about

calls to other modules. Separate compilation allows programmers to work on one part of

their program without needing to recompile the whole program, but this convenience comes

at a cost. The compiler does not have much information about functionality from other

modules as it compiles a single module, making optimizations more difficult.

A separately compiled program is turned into an executable through linking all of the

modules together, which can happen either statically or dynamically. Static linking creates

a full executable program by combining all of the modules of the program before running

the program. Dynamic linking creates references to other modules in the program and loads

them as needed when the program runs. Linking is just one step in the process of taking

a program from source code to running code, and programming languages often have more

steps that happen in that transformation process. This research looks at the impact macro

systems have on optimizing separately compiled programs.

Some programming languages provide macro systems, which run before compiling,

1

www.manaraa.com

that enable programmers to add features to the programming language through manipulation

of the syntax of the program. Simple macro systems allow textual replacement, like the

preprocessor in C/C++, while more advanced systems provide access to the syntax as objects

with rich lexical information and a full programming language to manipulate the syntax.

Some of these more advanced macro systems even allow programmers to write macros in the

same programming language they use to write their programs.

These advanced macro systems give programmers the ability to extend a programming

language in arbitrary ways, even to the point of being able to create domain specific languages

as collections of macros. When creating such programs, the details of individual macros are

often hidden in modules, and, much like a separately compiled program, these modules need

to be linked into an executable. Unlike a separately compiled program though, macros

generate code, so they need to run before the program can be compiled.

Macros written in the same language as the program need to use the same compiler

that the language uses, but the compilation needs to happen before normal program compi-

lation. Macros can also use other macros in their implementation, which means that those

other macros must be ready to run (compiled) before their use. This leads to an interleav-

ing of compiling and running code that goes back and forth to ultimately produce the final

program.

Separate compilation is more difficult in the presence of an advanced macro system.

Macros are defined side-by-side with program definitions, which means that macro definitions

can be spread across modules and can also use functionality provided in separate modules.

A compiler for such a language must ensure that modular programs have the same meaning

independent of the order in which the modules are compiled.

A solution to the problems of separate compilation with advanced macros is described

by Flatt and implemented for the Racket programming language [12]. He explains a method

of compiling modules in phases, where each phase corresponds to which part of the program is

running and which part of the program is compiling. In this case, running means executing

2

www.manaraa.com

code, which includes executing macros, because macros are just code as well. Compiling

means translating code from source code to executable code, perhaps with macros doing

part of the translation. At phase 0, the main program is running and nothing is compiling.

At phase 1, the main program is compiling and macros that it uses are running. At phase

2, the phase 1 macros are compiling and any macros used in the compilation of phase 1

macros are running, and so on. The compiler starts compiling at the highest phase of the

program (which can be upwards of phase 70 in normal Racket programs) and compiles each

phase downward until it produces phase 0 code. By separating compilation into phases, it

is possible to have both a module system and a macro system coexist.

Separate compilation makes compiler optimization more difficult and less effective.

Good abstractions, provided by splitting a program into modules, are meant to obscure inter-

nal implementations so that it is easier for programmers to reason about their programs, but

this obscurity also limits information available for optimizations. A single module compiled

alone is difficult to optimize because the compiler has little to no information about values

that come from other modules when compiling the module. Existing optimizations have

even less information when modules can extend the compiler, as modules can in languages

with advanced macro systems.

Language implementations have solved the problem of optimizing separately compiled

programs in various ways. Some implementations of languages avoid the problems associated

with separate compilation by not allowing it. The whole-program optimizing compilers

Stalin [19] for Scheme and MLton [5] for ML take this approach. Other implementations do

optimizations while statically linking the program. There are options in gcc [1] and clang [4]

to do this type of optimization. This type of optimization is usually done on machine code,

so it can be too low level to do certain optimizations. Some implementations perform cross-

module inlining by selectively choosing functions to inline between modules. Inlining must

be heuristic-based, and good heuristics are hard to develop. Just-In-Time (JIT) compilers

attack the problem in a different way by deferring optimizations until the program is running,

3

www.manaraa.com

where it has more information on the actual use of the program.

Our solution for optimizing modular programs in the presence of an advanced macro

system, called demodularization, is to transform a modular program into a non-modular

program by combining all phase 0 (runtime) code and data in the program into a single

module. Conceptually, this is similar to what static linkers do in programming languages

with separate compilation, but more complicated because finding all phase 0 code from the

set of modules that comprise a program is not trivial. Modules can include other modules at

different phase offsets, creating a directed acyclic graph of module relationships. In finding

and combining all of the phase 0 code, the demodularization algorithm removes code for all

other phases because they were only needed to compile the program, not run it.

After combining, the single module is then re-run through the existing optimizer, but

this time the optimizer has information about the whole program. This part is similar to

doing link-time optimization for programming languages with separate compilation, but is

at a higher level than most link-time optimizers. Demodularization is meant to be done

when producing the final production version of a program, so that during development, a

programmer can still take advantage of separate compilation.

Thesis Demodularizing programs in a language with a module system and an expressive

macro system is feasible and yields more optimization opportunity for the compiler, resulting

in more efficient code when compared to phased compilation and cross-module inlining.

The approach we take to validating the thesis is to first describe the Racket module

and macro systems in Chapter 2 as an example of a language with a module system and an

expressive macro system that is open source. Then, in Chapter 3, we explain demodulariza-

tion at a high level with a detailed example to show how the algorithm works on a Racket

program. Next, we use an operational semantics model of the demodularization process on

a simple language to show that demodularization preserves program behavior (Chapter 4).

The operational semantics model removes the unnecessary details of the full implementa-

4

www.manaraa.com

tion so the demodularization process is easier to understand and verify. We then describe

an actual implementation for Racket (Chapter 5). The implementation presents interesting

difficulties in using the Racket bytecode format and integrating with the existing compiler

framework written in C. Following that are experimental results of demodularizing and op-

timizing Racket programs and comparing them to phased compilation and cross-module

inlining (Chapter 6). The experimental results show that demodularization improves per-

formance, especially when a program is highly modular. Finally, we discuss related work on

whole program optimization (Chapter 7) and conclude with a summary and discussion of

future work (Chapter 8).

5

www.manaraa.com

Chapter 2

The Racket Module and Macro Systems

Demodularization is made to run on a program written in a language that combines

macros and modules. For this research, we chose to implement demodularization for the

Racket programming language because of its advanced macro and module systems. This

chapter gives background information on Racket through a detailed example program that

demonstrates macro and module usage.

2.1 The Racket Programming Language

The Racket Programming Language is a platform for creating powerful abstractions. These

abstractions are created through the use of Racket’s macro and module systems. The macro

system, a heritage from LISP [21] and Scheme [20], allows programmers to add new features

to their programs in an integrated way. The module system allows programmers to separate

their programs into logical parts and hide implementation details. Together, they allow

programmers to create Languages as Libraries [23] that are suitable for specific tasks.

The ability to use modules as languages allows programmers to write specialized

domain-specific languages (DSLs) to better express solutions to domain problems. Using

this ability, programmers have added languages for Typed Racket [22], Object-Oriented

Racket [11], Logic Programming [16], and more. Also, because they are modules, it is

possible to use them all in the same program and use the right language for each specific

problem. The language creating facilities of Racket extend to more than just collections

of functions and macros; they also allow changing the parser and changing the meaning of

6

www.manaraa.com

(define-syntax (while stx)
(syntax-case stx ()

[(while test body ...)
#’(begin

(define (while-loop)
(when test

body ...
(while-loop)))

(while-loop))]))

Listing 2.1: a macro implementation of a while loop

things like function application syntax.

2.2 Macros

Macros are the main way programmers add new features to Racket. Macros are written

alongside normal functions in a program, but they are used during the compilation of the

program. Essentially, macros are functions (known as transformers) whose domain and

range are syntax objects. Syntax objects are data structures that contain the raw syntax of

a program, along with lexical information and other properties associated with the syntax.

If a programmer needs the power, they can write transformers using all of the features

of Racket, as long as the function takes in and produces syntax objects. Racket provides

pattern-matching for syntax objects that makes writing macros simpler when that is all that

a programmer needs.

The define-syntax form is used to identify a macro definition that is a function from

syntax to syntax. The helper function, syntax-case matches syntax patterns so that it is

easy to use them in the output of the macro.

Listing 2.1 shows how to write a macro that adds while loop to the Racket language.

The macro turns a while loop into a recursive function and a call to that recursive function.

The #’ creates a syntax object out of the following parenthesized expression. The test

and body ... forms are pattern variables that will be substituted by syntax-case when a

7

www.manaraa.com

(while (< x 10)
(printf "x is ~a\n" x)
(set! x (add1 x)))

=>

(begin
(define (while-loop)
(when (< x 10)

(printf "x is ~a\n" x)
(set! x (add1 x)
(while-loop))))

(while-loop))

Listing 2.2: use and expansion of a while loop

programmer uses the macro, with test matching one expression and body ... matching one

or more expressions. Listing 2.2 shows a use of the while macro and what it expands into

after running the macro. Whatever syntax is in the place of the pattern variables at the use

of the macro will be put into the output of the macro.

Racket’s macros are hygienic [15], which means that identifiers created from programs

will not clash with identifiers created from macros. This means that macros are protected

from the surrounding program changing their identifiers, and also that the program is pro-

tected from the macro changing its identifiers. In this example that means that the Racket

program using a while loop macro will not be able to call the resulting while-loop function

that the macro creates, and that if the program happens to have another definition named

while-loop, that definition will be independent from the definition introduced by the macro.

Also, each use of the macro will have distinct definitions for while-loop so that the macro

can be nested and used multiple times.

2.3 Modules

Racket modules are a way of grouping definitions, expressions, and macros. Modules also

allow control over imports and exports, using the Racket forms require and provide re-

8

www.manaraa.com

#lang racket/base
(provide get-counter-val count-up)

(define x 0)
(define (get-counter-val) x)
(define (count-up) (set! x (add1 x)))

Listing 2.3: counter.rkt: A simple Racket module implementing a counter

spectively. Imports refer to other modules that have definitions for functionality that the

importing module needs by specifying the location of the other modules. Exports created by

provide list all of the identifiers within a module that will be visible by other modules when

imported. By default, everything is hidden and a programmer must specify what becomes

visible.

Listings 2.3-2.5 form an example program that highlights the use of modules and

macros together. The main module of the program, while-test.rkt (Listing 2.4), uses

a while loop (provided by while-lang.rkt in Listing 2.5) and a counter (provided by

counter.rkt in Listing 2.3) to print out counter values. The program also uses the counter

module at compile-time to print out information about the while loop (in this case, how

many expressions are in the while loop).

Listing 2.3 shows a simple Racket module that implements a counter object. The

countermodule contains a variable definition and functions for getting and incrementing that

variable. The module only exports the functions, so the module encapsulates the variable.

If a programmer wanted to use this module, they would import it using require as shown

in Listing 2.4.

It is also possible to use modules to help write macros. For example, if a programmer

wanted to change the while macro so that it reported how many expressions were in each

while loop, they could use functionality from the counter module inside the while definition

as seen in Listing 2.5. The definition for the while loop is the same as in Listing 2.1, but

now there is extra code that runs before the macro returns a syntax object. The extra code

9

www.manaraa.com

#lang racket/base
(require "while-lang.rkt")
(require "counter.rkt")

(while (< (get-counter-val) 4)
(printf "loop runtime val is ~a\n" (get-counter-val))
(count-up))

Listing 2.4: while-test.rkt: A Racket module that uses other modules

uses the counter module to count how many expressions are in the body of the while loop

and then prints that answer. It is possible to add code to the while macro because it is just

a function from syntax to syntax that runs at compile-time.

Because the macro runs at compile-time and uses the counter module at compile-

time, the programmer must indicate that fact to the compiler. This is done by using the

for-syntax form. The macro also uses printf, which comes from the racket/base module,

so that must be imported with for-syntax as well. Now this module can be used to extend

the language of other programs by adding a while loop, although it is just a library that is

included like any other library.

The relationships between the modules in a program inform Racket how to compile

and run the program, starting with a specified main module. The modules form a Directed

Acyclic Graph (DAG) which is known as the program’s require graph. Figure 2.1 shows the

require graph of the program with while-test as the main module. The Racket compiler

traverses this graph as it compiles the program, compiling each module separately as they

are encountered. Because macros run during the compilation process, Racket needs a way

to determine how to interleave compiling and running macros.

2.4 Phases

The way the Racket module system allows for reliable separate compilation is by separating

compilation and execution into phases. Phase 0 is the execution phase of the main module

of a program, what could be considered running the program. Phase 1 is the compilation

10

www.manaraa.com

#lang racket/base
(require (for-syntax racket/base

"counter.rkt"))
(provide while)

(define-syntax (while stx)
(syntax-case stx ()

[(while test body ...)
(begin
(for-each count-up

(syntax->list #’(body ...)))
(printf "while loop contains ~a expressions\n"

(get-counter-val))
#’(begin

(define (while-loop)
(when test

body ...
(while-loop)))

(while-loop)))]))

Listing 2.5: while-lang.rkt: A Racket module implementing a language with while loops

phase of the main module, which could include execution of code inside macros. A module

can contain both phase 0 and phase 1 code; regular function definitions are phase 0, and

macro definitions are phase 1.

Higher phases occur when macros use other macros in their implementation. Another

way higher phases occur is by importing modules for use inside a macro. In the example

program, the while-lang module imports the counter module using for-syntax. The

for-syntax form means that the module will be included for use at phase 1 relative to the

including module, so that its code is available to use inside macro definitions. There is an

analogous form, for-template, that will include code at phase (-1) relative to the including

module, so that the included module’s code will be available for use inside the output of a

macro. By allowing references to relative phases going in both directions, a Racket program

can have a complex structure of imports and exports.

It is possible for a single module to be used in multiple phases, and each phase will

have a separate instantiation of the module. In the example program above, the counter

11

www.manaraa.com

counter

racket/base

while-lang
for-syntax

for-syntax

while-test

require

require

Figure 2.1: Require graph for the while-test program

module will be instantiated twice, once for use while macros are running at phase 1, and

once for use while the main program is running at phase 0.

Even though compilation of a program can go through many phases and interleave

compiling and running code many times, side effects that occur during this process are

discarded. The separate compilation guarantee of the Racket module system is that “Any

effects of the instantiation of the module’s phase 1 due to compilation on the Racket runtime

system are discarded” [2].

2.5 Compiling and Running Programs

Compiling a Racket program interleaves traditional compiling (turning source code into

bytecode) and running macros. This process can then trigger compilation at higher phases

if the macros use other modules in their implementation. We will use compiling and running

the example program in Listings 2.3-2.5 to illustrate the process.

Compilation starts with the main module of the program, in this case while-test.rkt.

In terms of phases, compilation starts at phase 1. Anytime the compiler encounters a require

form, it will switch to compiling the imported module, which would be while-lang.rkt in

the example. Compiling while-lang.rkt will trigger compilation of its imports as well, but

this time its imports are required with for-syntax. This means that compilation switches

12

www.manaraa.com

to phase 2, and compiles the imports. We can assume that racket/base is already compiled,

so the compiler moves on to compile counter.rkt. Because counter.rkt has no imports,

it can be compiled completely into bytecode. Now, the compiler can finish the macro in

while-lang.rkt and produce bytecode for the macro. Next, the compiler switches back

to phase 1 and continues compiling while-test.rkt. The compiler runs into the import

for counter.rkt, but it has already been compiled, so it moves on to compiling the body

of the module. The body contains a use of the while macro, so it runs the code for the

macro, which includes printing out the number of expressions in the while loop. Finally, the

compiler turns the output of the macro into bytecode and finishes compilation.

To run the program, the Racket runtime loads the compiled bytecode for the while-test

module and runs it, and when the runtime encounters imports, it runs them as well. With

our example program, that means that nothing will happen on the import of while-lang

because it just contains a macro, and on the import of counter the runtime will load the

function definitions and create the x variable. This is a separate instantiation of the counter

module than the one that was used at compile time, so the counter starts fresh from 0.

2.6 Preparing for Demodularization

Running a separately compiled Racket program involves following all of the require forms

and running all phase 0 code in the order in which the code is imported. It is possible that

there will be phase 0 code to run from an imported module where the import path to that

module includes phase shifts. Module phases are relative to one another, so if one module

imports a module at phase 1, which then imports a different module at phase (-1), the code

in the third module will be at phase 0 relative to the first module and must be run in the

final program.

By understanding how Racket programs are compiled and evaluated, it is apparent

that only phase 0 code is necessary to run the program. This is the basis for how demodu-

larization can recover whole programs from separately compiled Racket modules.

13

www.manaraa.com

Chapter 3

Intuition

Demodularization is the process of collecting all phase 0 code required by a program

into a single module. This is done by tracing through the require graph starting at a

program’s main module. The following example program illustrates the need for demodu-

larization and how it is done.

3.1 Example Program

A programmer wants to use a queue library where the library uses different backing structures

depending on the length of the queue. Listing 3.1 shows an example of using such a library.

The library is implemented as a macro, shown in Listing 3.2, that switches between two

implementations depending on the length of the initial queue.

The macro with-queue uses syntax-case for its pattern-matching capabilities, and

creates a syntax object that will use the long or short implementation depending on the length

of (v ...). The macro uses a feature from the racket/syntax module called format-id

which operates like printf but instead of creating a string and printing it, it creates a

#lang racket/base
(require "queue.rkt")

(with-queue (1 2 3 4 5 6)
(enqueue 4)
(displayln (dequeue))
(displayln (dequeue)))

Listing 3.1: main.rkt module with queue usage

14

www.manaraa.com

#lang racket/base
(require (for-syntax racket/base

racket/syntax)
"short-queue.rkt"
"long-queue.rkt")

(define-syntax (with-queue stx)
(syntax-case stx ()

[(with-queue (v ...) e ...)
(begin
(define type
(if (> (length (syntax->list #’(v ...))) 5)

’long
’short))

(define make-queue
(format-id #’stx "make-~a-queue" type))

(define enqueue (format-id #’stx "~a-enqueue" type))
(define dequeue (format-id #’stx "~a-dequeue" type))
#`(let ([q (#,make-queue v ...)])

(define (#,(datum->syntax stx ’dequeue))
(#,dequeue q))

(define (#,(datum->syntax stx ’enqueue) x)
(#,enqueue q x))

e ...))]))

(provide with-queue)

Listing 3.2: queue.rkt module

syntax object for an identifier. So, make-queue is a syntax object that will refer to either

make-long-queue or make-short-queue. Similarly, enqueue and dequeue will refer to syntax

objects for the correct kind of queue.

The final syntax object is created using #` which creates a syntax object but allows for

escaping with #,. Escaping means that the value of the escaped form will be used rather than

the literal form. In this example, that means that #,make-queue will be make-long-queue

in the output of the macro rather than make-queue. All of this work with syntax objects

makes it so that the correct queue will be chosen at compile-time. There will be no overhead

of choosing a queue implementation at runtime, and the whole process will be invisible to

15

www.manaraa.com

#lang racket/base

(define (make-long-queue . vs)

--- make-vector ---)

(define (long-enqueue q v)

--- vector-set! ---)

(define (long-dequeue q)

--- vector-ref ---)

(provide (all-defined-out))

#lang racket/base

(define (make-short-queue . vs)

--- list ---)

(define (short-enqueue q v)

--- cons ---)

(define (short-dequeue q)

--- list-ref ---)

(provide (all-defined-out))

(a) (b)

Listing 3.3: Interfaces for two queues using different backing structures. (a) long-queue.rkt
using a vector and (b) short-queue.rkt using a list.

the user of the with-queue macro.

Listing 3.3 shows the public interfaces for two queue modules, with the long-queue

using vectors and the short-queue using lists. The actual implementations are not important

for this example, so most of the code is elided. The ... notation has meaning in Racket, so

--- is used to indicate elided code.

The require graph for this program is shown in Figure 3.1. The main module only

includes the queue module, and the queue module includes two modules using for-syntax

and two using require.

Compiling this program involves expanding the with-queuemacro in a manner similar

to that explained in Chapter 2. The final phase 0 program before it is turned into bytecode is

shown in Listing 3.4. The expanded program contains references to long-queue operations

because the length of the initial queue is over 5. This form is sufficient to illustrate the

difficulty of optimizing separately compiled modules. The program has calls to functions

16

www.manaraa.com

main queue
require

short-queue
require

long-queue

require

racket/syntax

for-syntax

racket/base

for-syntax

Figure 3.1: Require graph for the main program

(module main racket/base
(#%module-begin
(require "queue.rkt")
(let ((q (make-long-queue 1 2 3 4 5 6)))

(define (dequeue) (long-dequeue q))
(define (enqueue x) (long-enqueue q x))
(enqueue 4)
(displayln (dequeue))
(displayln (dequeue)))))

Listing 3.4: main.rkt module after macro expansion

in the long-queue module, but the optimizer does not have access to the functions. The

optimizer must treat the functions as if they are black boxes, so it cannot inline them.

3.2 Demodularization

Demodularization of the program proceeds by following the require graph and including all

phase 0 code from the required modules into the main module of the program. At this

point all of the modules have been separately compiled, so all macro expansion has been

done already. The require graph (Figure 3.1), starting at the main module, requires the

17

www.manaraa.com

queue module, but the queue module only has a macro definition, which is phase 1 code, so

it is not put into the main module. Again following the graph, the queue module requires

racket/base and racket/syntax using for-syntax, which means that all of their definitions

are imported at phase 1 and do not need to be included in the output. Next, demodulariza-

tion reaches the edges in the graph corresponding to the imports for the short-queue and

long-queue modules and includes all of their definitions (which are all phase 0) in the order

they appear in their original modules. The demodularization algorithm then removes all

imports from the main module of the program because all code has been included directly in

the main module. Listing 3.5 shows what the demodularized example program would look

like.

The demodularized program should have the exact same behavior at runtime as the

modular program. The only thing that changes is that the require graph of the program has

a single node in it with no edges, and all phase 0 code is in the main module. Also, both

queue implementations appear in the demodularized program even though only one of them

is used. This extra code is removed in the optimization pass.

3.3 Optimization

More optimizations can be applied to a demodularized program because such a program has

no dependencies on external code. The Racket optimizer is able to inline the queue operations

and remove the dead code associated with the short-queue module. The final version of the

example program after optimization is shown in Listing 3.6. The code has a smaller footprint

and avoids function call overhead when interacting with the queue. This example shows that

many optimizations are enabled through demodularization of a separately compiled Racket

program.

18

www.manaraa.com

(module main racket/base
(#%module-begin
(define (make-short-queue . vs)
--- list ---)

(define (short-enqueue q v)
--- cons ---)

(define (short-dequeue q)
--- list-ref ---)

(define (make-long-queue . vs)
--- make-vector ---)

(define (long-enqueue q v)
--- vector-set! ---)

(define (long-dequeue q)
--- vector-ref ---)

(let ((q (make-long-queue 1 2 3 4 5 6)))
(define (dequeue) (long-dequeue q))
(define (enqueue x) (long-enqueue q x))
(enqueue 4)
(displayln (dequeue))
(displayln (dequeue)))))

Listing 3.5: main.rkt module after demodularization

3.4 Demodularization with Phases

Demodularization needs to keep track of the phase at which modules are imported in order

to include all the necessary code to run the final program (i.e., no external dependencies).

The example in the previous section only required phase 0 code from the various modules

in the require graph; however, there are more complicated relationships where not just

phase 0 code is required in traversing the require graph even though all of the modules are

already compiled. This more complex demodularization happens when a module uses the

for-template form to import another module. The for-template form includes code at

phase (-1), which allows the definitions of the included module to be used in the output of

19

www.manaraa.com

(module main racket/base
(#%module-begin
(let ((q (--- make-vector --- 1 2 3 4 5 6 ---)))

(--- vector-set! --- 4 ---)
(displayln (--- vector-ref ---))
(displayln (--- vector-ref ---)))))

Listing 3.6: main.rkt module after optimization

#lang racket/base
(require (for-syntax racket/base

"b.rkt"))

(define-syntax (m stx)
(syntax-case stx ()

[(m)
y]))

(m)

Listing 3.7: a.rkt module

a macro. The ability for a Racket program to refer to both positive and negative phases is

the reason demodularization must track module phases as it traverses the require graph of

a program.

Listings 3.7-3.9 form a program where a simple demodularization algorithm would

not work. It is easiest to understand this program working backwards, starting with the c

module (Listing 3.9). The c module just defines a variable z and exports it. The b module

(Listing 3.8) imports the c module using for-template. This means that the definitions

from module c are at phase (-1) relative to module b and can be used when creating syntax

objects to refer to the actual binding of an identifier. Module b defines a new variable y

which is a syntax object that refers to z. Module a (Listing 3.7) imports module b using

for-syntax, meaning it can use definitions from b inside macro definitions. Module a uses

the definition for y inside a macro, and then calls the macro.

When this program is compiled, the macro will be expanded and module a will have

a reference directly to the variable z. This means that in order to run the program, the code

20

www.manaraa.com

#lang racket/base
(require (for-template "c.rkt"))
(provide y)
(define y #’z)

Listing 3.8: b.rkt module

#lang racket/base
(provide z)
(define z 10)

Listing 3.9: c.rkt module

from module c needs to run. Demodularization therefore needs to include module c in the

final output of the program as well.

Demodularization follows the require graph for the program (Figure 3.2), but it also

keeps track of the current phase relative to the main module of the program. In this example,

demodularization will visit module b at phase 1, so it will not include the definition for y in the

output of the program. It will then visit module c, which is at phase (-1) relative to module

b, which makes it equal to phase 0 of the main module of the program. Demodularization

will then include the code from module c. In this way, the demodularization algorithm tracks

phases as it traverses the require graph, including all phase 0 code from modules, until it

creates a single module with no dependencies.

a

racket/base

for-syntax

b

for-syntax

c

for-template

Figure 3.2: Require graph for the a program

21

www.manaraa.com

Chapter 4

Model

We can understand the specifics of demodularization by describing it as an algorithm

for a simple language with a well defined semantics. The simple language models the existing

Racket module system. We describe a small-step operational semantics (a series of syntactic

rules) that define how the language works. We also define a compiled version of the language

that mirrors the compiled version of Racket. Next, we describe how the demodularization

algorithm works as a metafunction over the language. Finally, we show that programs before

and after demodularization produce the same results.

4.1 A Module Language

The mod language (Figure 4.1) contains only the features necessary to write modular pro-

grams where it is possible to observe the effects of module evaluation order.

A program in mod consists of a list of modules that can refer to each other. Each

module has a name, any number of imports, any number of definitions, and a body of code.

All definitions in a module are exposed as exports to other modules, but to use definitions

from another module, the program must import it through a require expression. Both

require and define expressions have phase annotations; this simulates the interactions

between modules in a language with macros without requiring a model of macro expansion.

The language includes variable references, numbers, addition, and mutation. Mutation makes

module evaluation order observable, and addition represents the work that a module does.

In addition to numbers and variables, there are two special forms of values and references

22

www.manaraa.com

���������������������
���������������������	
��������	�������	����
�	
����������	������
��
��	�
	�����������

������
������	����	����
������
������	����
�������	��	����	����

������������	�
�������
�����
��
��	�

����������
�����������
��
��	�

��������������	�������
	����	��	�����	�
�
��	���������	�
�	����������������
��
��	����	����

Figure 4.1: mod language grammar

that model the interaction of macros with the module system. A quote expression is like a

reference to syntax at runtime. A ref expression is like a macro that can only do one thing:

refer to a variable at a phase.

4.2 Compilation

We have to compile mod programs before demodularizing them, just like in the Racket

implementation. In Racket, compiling expands all macros in a program and changes defini-

tions and variable references to refer to memory locations. In mod, compiling eliminates ref

expressions, turns definitions into set! expressions, changes variable references to include

module information, and sorts code into phases. Compilation in both cases still leaves be-

hind a relatively high-level language, but the language is free of syntactic extensions. This is

important for demodularization because otherwise macro expansion would have to be part

of the algorithm, which would complicate it and possibly duplicate work. The grammar in

Figure 4.2 specifies the compiled language for mod.

The grammar no longer has definitions, all variables now include module references,

and code is sorted into phases. The actual compilation function is not relevant to demodular-

ization. As an example of the compilation process, consider Listing 4.1. It shows a program

in the mod language. Listing 4.2 shows what this program would look like after compilation.

23

www.manaraa.com

���������������������
��
���������������������
����������������������������
������������

������
����������������
������������������
��������������������

��������������
���������������������

���������������
���������������������������������������

����������������

Figure 4.2: Compiled language grammar

The code no longer contains definitions, and all code has been sorted into the appropriate

phases.

((module foo ((require bar @ 1)) ((define x @ 1 as (+ y 8))) ((set! x 3)))
(module bar () ((define x @ -1 as 9) (define y @ 0 as 4)) ()))

Listing 4.1: Example program in the mod language

((module foo ((require bar @ 1))
((0 ((set! (bar x) 3)))
(1 ((set! (foo x) (+ (bar y) 8))))))

(module bar () ((-1 ((set! (bar x) 9))) (0 ((set! (bar y) 4))))))

Listing 4.2: Compiled version of example program

4.3 Evaluation

We evaluate the compiled language using a small-step reduction semantics. Because the

reduction rules are syntactic, we extend the compiled language further with evaluation con-

texts, a heap representation, and a stack representation to keep track of the order in which

to instantiate modules. These extensions are in Figure 4.3. An expression of the form:

(σ / (program / ((id phase) . . .) / ((id phase) . . .)))

24

www.manaraa.com

represents the state of the machine during evaluation. σ represents the heap of the program,

and, when evaluation finishes, σ represents the output of the program. The list of modules

is the code of program in the compiled language. The first list of (id phase) pairs is the list

of modules to evaluate, and the second list is the modules that have already been evaluated.

��������
�������������
������������
���������������
�����������������

���������������������
���
�������������������
������������������

Figure 4.3: Extensions to compiled language grammar

The reduction rules in Equations 4.1–4.7 evaluate a compiled program that starts

with an empty heap, the program code, a stack that contains the identifier of the main

module at phase 0, and an empty completed module list. Evaluation proceeds by adding

required modules to the evaluation stack and executing code of modules in the order they

appear on the evaluation stack when there are no more requires left.

��

���⊖ ��� (4.1)

The rule in Equation 4.1 matches a program with a require expression in the module

at the top of the evaluation stack and evaluates it by removing the require expression from

the module and pushing the required module onto the evaluation stack with the phase shifted

by the difference between the current module’s relative phase and the required phase. The 	

is not part of the language and represents the prefix version of the math function minus. The

current module is still on the stack and will continue evaluating after the required module

is done evaluating. The subsequent rules all apply only when the phase relative to the main

module is zero.

25

www.manaraa.com

���
��

�������������������〚������〛 (4.2)

The rule in Equation 4.2 looks up a variable in the heap and replaces the variable

with its current value. The lookup function is a simple list lookup function that matches the

variable name with its occurrence in the heap.

���

��⊕�������������������� (4.3)

The rule in Equation 4.3 replaces an addition expression of numbers with the result

of computing their sum. The ⊕ represents the prefix version of the math function plus.

���
���

������������������〚������������〛 (4.4)

The rule in Equation 4.4 installs a value for a variable into the heap and reduces to

the value. The assign function either replaces the existing value for a variable in the heap

or installs a new entry in the heap if it does not exist already.

��
��� (4.5)

When an expression is a begin with a value in the first position, the rule in Equa-

tion 4.5 removes the value and replaces the begin expression with the expression in the

second position.

26

www.manaraa.com

��
�� (4.6)

When there are no more expressions left in a module, the rule in Equation 4.6 applies

by removing the module from the program and placing a reference to it in the list of finished

modules.

��
��� (4.7)

The rule in Equation 4.7 applies when the current module on the stack is in the

finished list, so that modules are not evaluated multiple times.

The combination of all of these rules forms a definition for how modular programs in

the compiled mod language are evaluated.

4.4 Demodularization

Figures 4.4–4.7 show the demodularization algorithm for the compiled language. The al-

gorithm takes as input an id specifying the main module of the program, a working list of

phased requires, and a list of modules that make up the program.

�����〚���〛��� ���������������������������

Figure 4.4: Demodularization algorithm

The rule in Figure 4.4 applies when the main module has no requires left and there

are no requires in the working list, meaning the algorithm can terminate with just the phase

0 code of the main module remaining.

The rules in Figure 4.5 apply when the main module requires the next module in the

module list. Both rules add the required module’s id to the working list of required modules

so that the algorithm will follow the complete require graph. The first rule handles the case

27

www.manaraa.com

�����〚��
���

���������〛

��������〚�����������������������
���
���

���������〛
���������������������������

�����〚��
�����������������������������������

���������〛

��������〚�����������������������
�����������������������������������
�����������������������������������

���������〛

Figure 4.5: Demodularization algorithm

where the required module has code that will be at phase 0 for the main module and puts

that code before the existing phase 0 code of the main module. The rules in Figure 4.6 apply

�����〚������������������������������������
���
��
��

���������〛

��������〚��
���
�����������������������������������
��

���������〛
�����〚������������������������������������

�����������������������������������
��
�����������������������������������

���������〛

��������〚��
�����������������������������������
�����������������������������������
�����������������������������������

���������〛
�����〚������������������������������������

�����������������������������������
���������������������������

���������〛

��������〚�����������������������
�����������������������������������
���������������������������

���������〛

Figure 4.6: Demodularization algorithm

when handling the working list of required modules. The first rule is similar to the first rule

of Figure 4.5 because it extracts code that will be in phase 0 of the main module and inserts

it into the main module. The second rule handles the case where there is no matching code

for phase 0. The third rule removes an entry from the working list when the module has no

more requires.

�����〚��〛 ��������〚��〛
�����〚��

��〛
��������〚��

��〛
�����〚������������������������������������

�����������������������������������
��������
�����������������������������������

���������〛

��������〚������������������������������������
�����������������������������������
�����������������������������������
��������

���������〛
�����〚������������������������������������

�����������������������������������
��
��������
�����������������������������������

���������〛

��������〚������������������������������������
�����������������������������������
��
�����������������������������������
��������

���������〛

Figure 4.7: Demodularization algorithm

28

www.manaraa.com

The final four rules in Figure 4.7 rearrange the program’s module list so that modules

that require each other are adjacent in the list and the other rules can apply.

4.5 Equivalence

We claim that the programs will evaluate to the same answers before and after demodular-

ization. We first show what code in a program’s modules will run, then that a require can

be turned into a begin, and finally that demodularization maintains program meaning.

Lemma 1. Only code relative to phase 0 of the main program will be evaluated.

Proof. Let module A be the main module of a program P . Let module B be a module in P .

If B is not reachable in the require graph from A, then none of its code will be evaluated.

If B is reachable from A, it will be pushed on the evaluation stack at some phase n. The

phase n is calculated by subtracting the phase module B was required at from the current

evaluation phase, which started at 0. Therefore, the code that will be evaluated in B is the

code at phase n, if it exists.

Lemma 2. A program with a require is bisimilar to a program with a begin.

Proof. Let program P be

((module0)...(module A ((require B @ phasen)) ((m exprA)))

(module B () ((−phasen exprB))) (module1) ...)

for some modules A and B and phases n,m. Let program P ′ be

((module0) ...(module A () ((m (begin exprB exprA)))) (module1) ...)

. Programs P and P ′ are bisimilar. Phase m must be relative to phase 0 for any module

requiring A for exprA and exprB to be evaluated per Lemma 1, otherwise the programs

are trivially bisimilar. Evaluating P will put B on the evaluation stack at phase −n per

29

www.manaraa.com

rule 4.1. Then it will evaluate exprB until it is a value. Next it will pop B off the stack

and evaluate A at phase 0. This will evaluate exprA until it is a value. Evaluating P ′ will

evaluate exprB to a value per rule 4.5. Then it will evaluate exprA to a value, therefore P

and P ′ are bisimilar.

Theorem. Evaluating a program P a number of steps n and the demodularized program P ′

a number of steps m will be bisimilar with respect to the stores of the programs as shown in

Figure 4.8.

P P ′

P̂ P̂ ′

n m

Figure 4.8: Bisimilarity of a program before and after demodularization

Proof. The demodularization algorithm tracks the phases in which modules are required

relative to phase 0 of the program. Per Lemma 1, this is the only code that will be evaluated

in the program. The algorithm then removes the require forms and replaces them with

begin forms in the main module of the program. Lemma 2 states that turning a require

into a begin results in a bisimilar program. Therefore, a program is bisimilar before and

after demodularization.

30

www.manaraa.com

Chapter 5

Implementation

The implementation of demodularization for the Racket module system integrates

with the existing compilation process. The goal of the implementation was to write the

actual algorithm in Racket, but to use as much of the existing infrastructure as possible.

We did not want to duplicate work done by the compiler, so the demodularization algorithm

operates on Racket bytecode. We also did not want to duplicate work done by the optimizer,

so we pass the demodularized program through the existing optimizer. All of the pieces of

the demodularization process are contained within a command line tool.

5.1 Racket Compilation Process

Figure 5.1 shows the compilation process that a Racket module undergoes and the various

intermediate forms the code takes. In principle it would be possible to write the demodu-

larization algorithm for modules at any point in this process, but we chose to write it at the

bytecode level because it is a well defined file type and phases are clearly delineated.

The compilation process for Racket is all written in C. The first step of compiling

a Racket module is to expand all of the macros it uses into what is known as the Racket

kernel language or fully expanded code. The next step is compilation to an Intermediate

Representation (IR) made up of C data structures. The optimizer works on this IR to produce

an optimized version of it. Then, the compiler finishes turning the IR into bytecode.

31

www.manaraa.com

Racket code (.rkt)

Fully expanded code

Intermediate Representation

Optimized IR

Racket bytecode (.zo)

macro expander

compiler

optimizer

compiler

Figure 5.1: Racket compilation process

5.2 Racket bytecode

Racket bytecode is different from most other forms of bytecode in that it mostly maintains

the structure of the abstract syntax tree from the original program. The main aspect that

changes between fully-expanded Racket programs and Racket bytecode is the use of stack

positions instead of variables and the addition of stack-manipulating instructions. A full

explanation of Racket bytecode and what it means can be found in "The Racket virtual

machine and randomized testing" [14].

A table is created in the bytecode for the top level bindings in a module, which is

known as the prefix. All top level bindings have an entry in the prefix, including bindings

that come from other modules, and any use of a top level binding in a program is replaced

with a numeric reference to the entry. Listing 5.1 shows a simple program written in the most

basic language that Racket supports: the kernel language. When this code is compiled, it

turns into the bytecode in Listing 5.2.

In the bytecode, all references to the variable y have been replaced with references

to the prefix in the form of (toplevel 0). All references to displayln have also been

replaced with (toplevel 1) references, which in turn references element 7 of the prefix of

32

www.manaraa.com

(module hello ’#%kernel
(#%require racket/private/misc)
(define-values (y) (random))
(let-values ([(x) #f])
(set! x 5)
(displayln x)
(displayln (+ x y))))

Listing 5.1: Example program written in kernel language

(module hello
(prefix (y (module-variable racket/private/misc displayln 7)))
(requires #%kernel racket/private/misc)
(def-values (toplevel 0)

(app (primval 273)))
(let-one
(box-env
(install-value 0 5

(seq
(app (toplevel 1) (local 1))
(app (toplevel 1)

(app (primval 247) (local 3) (toplevel 0))))))))

Listing 5.2: Bytecode representation of program from Listing 5.1

the racket/private/misc module. The references to x are now all different because the

stack changes between each usage of x. The references to random and + are replaced with

references to primitive implementations in the Racket runtime.

5.3 Demodularization

The implementation of demodularization for the Racket module system is written in Racket

and consumes and produces Racket bytecode. Figure 5.2 shows the demodularization process

and how it interacts with existing Racket components. The library for reading and writing

Racket bytecode in Racket was mainly used for debugging purposes and was incomplete, so

the first task was to fully implement the Racket bytecode library.

The actual algorithm for demodularization is similar to the model in the previous

33

www.manaraa.com

Bytecode modules (.zo)

Modules in Racket

Single module in Racket

Single bytecode module (.zo)

Single module in IR

Optimized byte-
code module (.zo)

bytecode reader

demodularizer

bytecode writer

decompiler

optimizer, compiler

Figure 5.2: Demodularization process

chapter in that it traces requires and includes all phase 0 code in the final module, but it

also has to deal with the module prefix and references to the prefix. When the algorithm

includes a required module, it also includes that module’s prefix appended to the end of the

main module’s prefix. Then, it must adjust all references in that module’s code to point at

the new combined prefix. Also, the algorithm tracks cross-module references and rewrites

them to point to the new prefix as well. In the example in Listing 5.2, when the algorithm

includes the module racket/private/misc it must rewrite the reference to (toplevel 1) to

whatever the new position for displayln is in the combined prefix.

5.4 Optimization

For demodularization to be useful, the program needs to be optimized after demodulariz-

ing it. To optimize the demodularized bytecode, we wanted the existing Racket optimizer

built into the Racket compiler so that we get all existing optimizations “for free” and any

new optimizations in the future will work on both regularly compiled and demodularized

34

www.manaraa.com

programs. The existing optimizer works on an intermediate form between fully-expanded

Racket code and Racket bytecode. This intermediate form only exists as C data structures

in the implementation of Racket. Therefore, to use the existing optimizer, Racket bytecode

needed to be decompiled into this intermediate form.

5.5 Decompilation

The decompiler was written in C, so that it could interoperate with the optimizer. There are

three main differences between Racket bytecode and the intermediate form: stack positions,

cyclic closures, and reference arguments. In Racket bytecode and in the intermediate form,

all references to bindings are numeric, but in bytecode the references are stack positions and

in the intermediate form the references are lexical. For example, the bytecode in Listing 5.2

has three references to x, in the form of (install-value 0 5), (local 1), and (local 3).

In the intermediate form, all of these references to x should be 0 because lexically they all

refer to the same variable that is the closest binding.

Racket bytecode allows for cyclic closures, or closures which contain a reference to

themselves. Nothing like this exists in the intermediate form, so to decompile cyclic closures,

the decompiler creates a new top level definition for the closure and replaces references to

the closure (including the self-references) with references to the top level definition.

Finally, Racket bytecode allows reference arguments (like C++ reference arguments)

in functions, but the intermediate form doesn’t allow them. The decompiler turns reference

arguments into case-lambda closures over the reference arguments with one case for getting

the argument value and one case for setting the argument value.

The decompilation algorithm is not the identity function when composed with compi-

lation because of the transformations performed on cyclic closures and reference arguments.

Sometimes the optimizer will remove the case-lambda arguments and turn them back into

reference arguments, but this is not guaranteed. Racket has robust bytecode verification

built in to the module loading system, so errors that were introduced by the decompiler were

35

www.manaraa.com

mostly caught by bytecode verification.

5.6 Limitations

Racket provides features that treat modules as first-class objects during runtime. For exam-

ple, programs can load and evaluate modules at runtime through dynamic-require. Be-

cause the demodularizer cannot know ahead of time what modules might be loaded at

runtime, it disallows programs that use dynamic-require. If the modules loaded through

dynamic-require were completely separate (meaning they do not share any required mod-

ules) from the main program, it would be possible to demodularize the program, but in

practice most modules required at runtime will share with the main program.

The restriction of not allowing dynamic-require means that programs that need to

load modules on the fly, such as REPLs, sandboxed evaluation environments, and scripting

environments cannot be demodularized. This is okay because such programs are fundamen-

tally incomplete programs whose full meaning isn’t known until runtime.

5.7 Usage

The implementation of demodularization is included in the Racket distribution as part of the

build tool raco. Users can pass in a module they would like to demodularize and optimize to

the tool and it will compile all the necessary modules, run the demodularization algorithm

on them, decompile the resulting module, and run optimizations on it to produce the final

module. For example, to demodularize a program whose main module was while-test.rkt,

a user would type the following command:

raco demod -O while-test.rkt

36

www.manaraa.com

Chapter 6

Evaluation

For demodularization to be useful, it should improve performance of modular pro-

grams. To test whether or not this is the case, we created benchmarks to test the speed

of demodularized programs versus their modular counterparts. We also compare the results

with the cross-module inliner included in Racket. We show improvements in the size of

programs through the use of a dead-code elimination algorithm. Finally, we discuss further

improvements that demodularization can enable.

6.1 Racket Optimizer

The Racket optimizer included a cross-module inliner in version 5.2. This inliner accom-

plishes many of the same improvements that the demodularizer does. The inliner does have

limitations on the size of functions that it will inline, so with large functions demodulariza-

tion is still preferable. We compare the results with the inliner turned off, with the inliner

turned on, and with demodularization. The demodularized programs are also run through

the existing Racket optimizer.

6.2 Testing Setup

The tests were run on a MacBook Pro (2GHz Intel i7 processor, 8GB Memory) in OS X

Yosemite, using Racket v6.2. Each test was run 5 times and an average of the results was

taken.

37

www.manaraa.com

6.3 Micro benchmarks

The micro benchmarks for demodularization involve a module that calls a function twice

from another module, which calls a function twice from another module, and so on for the

number of modules in the test. This results in an exponential algorithm in the number of

modules. The function call happens in a loop to get times that are significant. The full

test generation code can be found in Appendix A. Figure 6.1 shows the results of running

these benchmarks with different numbers of modules. The X-axis represents the number of

modules in a program. The Y-axis represents the time in seconds it takes for the program

to run, where lower times are better. Without inlining, the micro benchmarks increase in

an exponential fashion with an increase in the number of modules. With inlining, the micro

benchmarks also increase exponentially, but the times line up with having one fewer module

because the inliner is able to inline the final module. With demodularization, the micro

benchmarks increase exponentially, but are flatter and significantly faster compared to the

other two tests.

The cross-module inlining algorithm is more complicated than the demodularization

algorithm, so there are cases where inlining would fail and demodularization would not. The

inlining algorithm creates annotations on the bytecode of functions, which it must track

and update. If a function is too large, the algorithm will not inline it (even if it is only

used once). Demodularization does not have these limitations because every function in the

program is available to the optimizer as if it were a local function. This benchmark highlights

the differences between cross-module inlining and demodularization by creating a function

that is too large to inline across module boundaries but will be inlined inside a module.

6.4 Macro Benchmarks

For macro benchmarks we selected programs that would terminate deterministically and

that used multiple modules. One of the programs we tested was a program that uses the

38

www.manaraa.com

���

�
��
��
��
�

�
��
��
��
�

�
��
��
��
�

�
��
��
��
�

�
��
��
��
�

�
��
��
��
�

�
��
��
��
�

�
��
��
��
�

�
��
��
��
�

��������� ��������� ��������� ��������� ��������� ��������� ��������� ��������� ������������������ ������������������ ������������������
���������

������������������

������������������

������������������

��������������������������� ���
���
���

Figure 6.1: Results from micro benchmarks

39

www.manaraa.com

Racket XML library to read large XML files. The program can be found in Appendix A.

For test data, we used astronomical data from NASA [3]. The second program we tested

is a benchmark for the Redex tool. Redex is a library that allows users to build and test

semantic models. We also tested uses of the math and plot libraries, which are written in a

modular way. Figure 6.2 shows the results of running demodularization on larger programs.

The Y-axis represents the time taken by the benchmark, with lower results being better.

The demodularized versions of the programs perform about 10% better than their modular

counterparts. This improvement is just using existing optimizations done by the Racket

compiler, so there is potential for even more improvement with optimizations that need

whole program information.

6.5 Dead Code Elimination

As an experiment, we implemented an unsound dead code elimination algorithm for demodu-

larized programs. It identifies all uses of toplevel definitions in the body of the demodularized

program and eliminates all other toplevels. The reason it is unsound is because although

some toplevels may not be referenced directly in the program, they may be needed for side-

effects that they have. These side-effects may include setting up global objects or tables

that will be referenced by the program, or I/O operations. In order to make the dead code

elimination algorithm sound, we would need to identify primitives that can have side-effects

and include any toplevels that use those primitives. This would be possible to do with some

engineering effort, but it is beyond the scope of this work. The experiment gives a lower-

bound on the performance of this optimization, so it is a useful result. Figure 6.3 shows how

much smaller programs become after running the dead code elimination algorithm on them.

The Y-axis represents the total size of the bytecode of the program, which is approximately

the same for a program before and after demodularization (the difference is whether it is in

multiple files or just one), and significantly less after dead code elimination. This aggressive

amount of dead code elimination is only possible on demodularized programs because all of

40

www.manaraa.com

���

�
��
��
��
�

�
��
��
��
�

�
��
��
��
�

�
��
��
��
�

�
��
��
��
�

�
��
��
��
�

�
��
��
��
�

�
��
��
��
�

�
��
��
��
�

��������������������������� ������������������������������������ ������������������������������������ ���
���������

���������

������������������

������������������

������������������

������������������

������������������

���
���

Figure 6.2: Results from macro benchmarks

41

www.manaraa.com

���

�
��
��
��
�
�

�
��
��
��
�
�

�
��
��
��
�
�

�
��
��
��
�
�

�
��
��
��
�
�

�
��
��
��
�
�

�
��
��
��
�
�

�
��
��
��
�
�

�
��
��
��
�
�

��� �� ��������������������������� ������������������������������������
���������

������������������������������������

���

���
���
���

Figure 6.3: Dead code elimination results

the code the program will need is in a single module.

When dead code is eliminated it opens up opportunities for other optimizations be-

cause the code is smaller. It opens up opportunities for inlining functions that are used a

small number of times or determining if the values of arguments are the same. Also, smaller

code size can be a benefit by itself in space constrained or networked systems.

6.6 Further Optimizations

Having access to the whole-program at once enables optimizations that currently are not

implemented by the Racket optimizer. For example, any optimizations that rely on Control-

42

www.manaraa.com

Flow Analysis (CFA) [18] require access to the whole program. These include type test

eliminations and inlining inside function definitions based on arguments. Demodularization

enables these sorts of optimizations to be performed on modular programs.

Demodularization is a simple solution to the optimization problems that arise from

modular programming. Even just using existing optimizations that were not implemented

with whole programs in mind, we see some benefits in performance. When new optimizations

are developed that take advantage of whole programs, we should see even bigger improve-

ments in performance.

43

www.manaraa.com

Chapter 7

Related Work

Prior work on whole-program optimization has come in two flavors, depending on how

much access to the source code the optimizer has. The first approach assumes full access to

the source code and is based on inlining. The second approach only has access to compiled

modules and is based on combining modules.

The first approach is based on selectively inlining code across module boundaries

because it has full access to the source code of the program [6, 7]. Most of the focus of this

approach is finding appropriate heuristics to inline certain functions without ballooning the

size of the program and making sure the program still produces the same results. Resulting

programs are not completely demodularized; they still have some calls to other modules.

Specifically, Chambers et al. [7] show how this approach applies to object-oriented languages

like C++ and Java, where they are able to exploit properties of the class systems to choose

what to inline. Blume and Appel [6] showed how to deal with inlining in the presence of

higher order functions, to make sure the semantics of the program didn’t change due to

inlining. Their approach led to performance increases of around 8%.

The second approach is taking already compiled modules, combining them into a

single module, and optimizing the single module at link time [8, 9]. Most of the work

done with this approach optimized at the assembly code level, but because they were able

to view the whole program, the performance increases were still valuable. The link-time

optimization system by Sutter et al. [8] achieves a 19% speedup on C programs. One of the

reasons for starting with compiled modules is so that programs using multiple languages can

44

www.manaraa.com

be optimized in a common language, like the work done by Debray et al. [9] to combine a

program written in both Scheme and Fortran. The main problem with this approach is that

the common language has less information for optimization than the source code had. These

approaches are similar to demodularization, but they operate at a lower level and work on

languages without phased module systems.

45

www.manaraa.com

Chapter 8

Conclusion

Demodularization is a useful optimization for deploying modular programs. A pro-

grammer can write a modular program and get the benefits of separate compilation while

developing the program, and then get additional speedups by running the demodularizer on

the completed program.

Demodularization does have some limitations, such as the speed of the algorithm and

not allowing dynamic importing. Currently, demodularization takes too long to include in a

rapid feedback loop of coding, compiling, and running a program. It is best used as a final

step before using a release version of a program. This could be improved by better library

design (so that less modules are included in each program), or by allowing partial groups of

modules to be compiled separately. Dynamic importing is important for programs such as

IDEs and games that have plugins or scripts that are added at runtime. Possible future work

could allow for these types of programs to work with support for compiling partial groups

and a way of matching identifiers in the program with dynamically imported identifiers.

Although this thesis focuses on Racket, many other languages have advanced metapro-

gramming features or are beginning to add them. For example, Template Haskell [17], SugarJ

for Java [10], Clojure macros [13], and C++ templates. As these features in other languages

mature, they will deal with the same issues Racket has had to deal with in combining macro

and module systems. If they choose to implement a phased module system to solve these

issues, demodularization would be a viable approach to optimizing programs in those lan-

guages.

46

www.manaraa.com

Demodularization also enables new optimizations that are not feasible to implement

for modular programs. Without module boundaries, inter-procedural analysis is much easier

and worthwhile. Also, dead code elimination works much better because the whole program

is visible, while in a modular program, only dead code that is private to the module can

be eliminated. We would like to see implementations of Control-Flow Analysis for Racket

programs now that whole programs are accessible through demodularization.

47

www.manaraa.com

References

[1] Link-time optimization in gcc: Requirements and high-level design. https://gcc.gnu.
org/projects/lto/lto.pdf, 2005. [Online; accessed 18-January-2016].

[2] Separate compiliation guarantee. http://docs.racket-lang.org/reference/

eval-model.html#%28part._separate-compilation%29, 2015. [Online; accessed
4-December-2015].

[3] Xml data repository. http://www.cs.washington.edu/research/xmldatasets/www/

repository.html#nasa, 2015. [Online; accessed 16-December-2015].

[4] Llvm link time optimization: Design and implementation. http://llvm.org/docs/

LinkTimeOptimization.html, 2016. [Online; accessed 18-January-2016].

[5] Mlton. http://www.mlton.org, 2016. [Online; accessed 18-January-2016].

[6] Matthias Blume and Andrew W. Appel. Lambda-splitting: a higher-order approach to
cross-module optimizations. In Proceedings of the second ACM SIGPLAN international
conference on Functional programming, ICFP ’97, pages 112–124, New York, NY, USA,
1997. ACM.

[7] Craig Chambers, Jeffrey Dean, and David Grove. Whole-program optimization of
object-oriented languages. Technical report, 1996.

[8] Bjorn De Sutter, Bruno De Bus, and Koen De Bosschere. Link-time binary rewriting
techniques for program compaction. ACM Trans. Program. Lang. Syst., 27(5):882–945,
September 2005.

[9] Saumya K. Debray, Robert Muth, and Scott A. Watterson. Link-time improvement of
scheme programs. In Proceedings of the 8th International Conference on Compiler Con-
struction, Held as Part of the European Joint Conferences on the Theory and Practice
of Software, ETAPS’99, CC ’99, pages 76–90, London, UK, UK, 1999. Springer-Verlag.

[10] Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Ostermann. Sug-
arj: Library-based syntactic language extensibility. In Proceedings of the 2011 ACM

48

https://gcc.gnu.org/projects/lto/lto.pdf
https://gcc.gnu.org/projects/lto/lto.pdf
http://docs.racket-lang.org/reference/eval-model.html#%28part._separate-compilation%29
http://docs.racket-lang.org/reference/eval-model.html#%28part._separate-compilation%29
http://www.cs.washington.edu/research/xmldatasets/www/repository.html#nasa
http://www.cs.washington.edu/research/xmldatasets/www/repository.html#nasa
http://llvm.org/docs/LinkTimeOptimization.html
http://llvm.org/docs/LinkTimeOptimization.html
http://www.mlton.org

www.manaraa.com

International Conference on Object Oriented Programming Systems Languages and Ap-
plications, OOPSLA ’11, pages 391–406, New York, NY, USA, 2011. ACM.

[11] Robert Bruce Findler and Matthew Flatt. Modular object-oriented programming with
units and mixins. In Proceedings of the Third ACM SIGPLAN International Conference
on Functional Programming, ICFP ’98, pages 94–104, New York, NY, USA, 1998. ACM.

[12] Matthew Flatt. Composable and compilable macros: you want it when? In Proceedings
of the seventh ACM SIGPLAN international conference on Functional programming,
ICFP ’02, pages 72–83, New York, NY, USA, 2002. ACM.

[13] Rich Hickey. The clojure programming language. In Proceedings of the 2008 Symposium
on Dynamic Languages, DLS ’08, pages 1:1–1:1, New York, NY, USA, 2008. ACM.

[14] Casey Klein, Matthew Flatt, and RobertBruce Findler. The racket virtual machine and
randomized testing. Higher-Order and Symbolic Computation, pages 1–45, 2013.

[15] Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce Duba. Hygienic
macro expansion. In Proceedings of the 1986 ACM Conference on LISP and Functional
Programming, LFP ’86, pages 151–161, New York, NY, USA, 1986. ACM.

[16] Jay McCarthy. Datalog: Deductive database programming. http://docs.

racket-lang.org/datalog, 2015. [Online; accessed 4-December-2015].

[17] Tim Sheard and Simon Peyton Jones. Template meta-programming for haskell. SIG-
PLAN Not., 37(12):60–75, December 2002.

[18] Olin Grigsby Shivers. Control-flow Analysis of Higher-order Languages or Taming
Lambda. PhD thesis, Pittsburgh, PA, USA, 1991. UMI Order No. GAX91-26964.

[19] Jeffrey Mark Siskind. Flow-directed lightweight closure conversion. Technical report,
1999.

[20] Michael Sperber, R. Kent Dybvig, Matthew Flatt, Anton Van Straaten, Robby Findler,
and Jacob Matthews. Revised6 report on the algorithmic language scheme. Journal of
Functional Programming, 19:1–301, 2009.

[21] Guy L. Steele, Jr. Common LISP: The Language (2nd Ed.). Digital Press, Newton,
MA, USA, 1990.

49

http://docs.racket-lang.org/datalog
http://docs.racket-lang.org/datalog

www.manaraa.com

[22] Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of typed
scheme. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’08, pages 395–406, New York, NY, USA,
2008. ACM.

[23] Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew Flatt, and
Matthias Felleisen. Languages as libraries. In Proceedings of the 32nd ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI ’11,
pages 132–141, New York, NY, USA, 2011. ACM.

50

www.manaraa.com

Appendix A

Benchmarks

A.1 Micro-benchmark generator

micro.sh

#!/bin/zsh

for x in 2 5 6 7 8 9 10 11 12; do

racket comp.rkt $x

echo "No inline for: $x"

time racket m0.rkt

rm -rf compiled

raco make m0.rkt

echo "Cross module inlining for: $x"

time racket m0.rkt

raco demod -O m0.rkt

echo "Demodularized for: $x"

time racket m0_rkt_merged.zo

done

rm m{0..11}.rkt

comp.rkt

#lang racket

(define (compile-without-optimizations filename)

(parameterize ([current-namespace (make-base-namespace)]

[compile-context-preservation-enabled #t])

(with-output-to-file (format "compiled/~a" (path-add-suffix filename ".zo"))

#:exists ’truncate

(lambda ()

(write (compile (read (open-input-file filename))))))))

51

www.manaraa.com

(define (write-module n)

(with-output-to-file (format "m~a.rkt" n)

#:exists ’truncate

(lambda ()

(printf

"(module m~a ’#%kernel

(#%require \"m~a.rkt\")

(#%provide f~a)

(define-values (f~a) (lambda (x)

(if (f~a x)

(f~a x)

(begin

(random) (random) (random) (random) (random)

(random) (random) (random) (random) (random)

)))))

"

n (add1 n) n n (add1 n) (add1 n)))))

(define (write-first-module)

(with-output-to-file "m0.rkt"

#:exists ’truncate

(lambda ()

(printf

"(module m0 ’#%kernel

(#%require \"m1.rkt\")

(letrec-values ([(loop)

(values (lambda (x)

(if (= x 0)

’done

(begin

(f1 x)

(loop (sub1 x))))))])

(loop 10000000)))

"))))

52

www.manaraa.com

(define (write-last-module n)

(with-output-to-file (format "m~a.rkt" n)

#:exists ’truncate

(lambda ()

(printf

"(module m~a ’#%kernel

(#%provide f~a)

(define-values (f~a) (lambda (x)

(add1 x))))

"

n n n))))

(define num-modules

(sub1 (string->number (vector-ref (current-command-line-arguments) 0))))

(write-first-module)

(for ([i (in-range 1 num-modules)])

(write-module i))

(write-last-module num-modules)

(for ([i (in-range (add1 num-modules))])

(compile-without-optimizations (format "m~a.rkt" i)))

A.2 XML benchmark

test-data.sh

if [! -f "nasa.xml"];

then

curl -O http://www.cs.washington.edu/research/xmldatasets/data/nasa/nasa.xml

fi

racket xml.rkt < nasa.xml

raco demod -O xml.rkt

racket xml_rkt_merged.zo < nasa.xml

xml.rkt

#lang racket/base

53

www.manaraa.com

(require xml)

(time (void (read-xml)))

54

	Enabling Optimizations Through Demodularization
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Contents
	List of Figures
	List of Listings
	Introduction
	The Racket Module and Macro Systems
	The Racket Programming Language
	Macros
	Modules
	Phases
	Compiling and Running Programs
	Preparing for Demodularization

	Intuition
	Example Program
	Demodularization
	Optimization
	Demodularization with Phases

	Model
	A Module Language
	Compilation
	Evaluation
	Demodularization
	Equivalence

	Implementation
	Racket Compilation Process
	Racket bytecode
	Demodularization
	Optimization
	Decompilation
	Limitations
	Usage

	Evaluation
	Racket Optimizer
	Testing Setup
	Micro benchmarks
	Macro Benchmarks
	Dead Code Elimination
	Further Optimizations

	Related Work
	Conclusion
	References
	Appendices
	Benchmarks
	Micro-benchmark generator
	XML benchmark

